On an Invariant of Divisors of Mersenne Number
نویسنده
چکیده
where p is prime. In our paper we use the latter name. In this form numbers Mp at the first time were studied by Marin Mersenne (1588-1648) at least in 1644 (see in [1, p.9] and a large bibliography there). In our paper we show that all composite Mersenne numbers belong to a class S of pseudoprimes of base 2 which is a subclass of super-Poulet pseudoprimes. Analysis of properties of pseudoprimes from S leads us to the following result (we denote ordn2 the order of 2 (modn)). Theorem 1. Let p be a prime and d|Mp, d > 1. Then ordd 2 = p .
منابع مشابه
Overpseudoprimes, Mersenne Numbers and Wieferich Primes
We introduce a new class of pseudoprimes-so called ”overpseudoprimes” which is a special subclass of super-Poulet pseudoprimes. Denoting via h(n) the multiplicative order of 2 modulo n,we show that odd number n is overpseudoprime if and only if the value of h(n) is invariant of all divisors d > 1 of n. In particular, we prove that all composite Mersenne numbers 2 − 1, where p is prime, and squa...
متن کاملDivisors of Mersenne Numbers By Samuel
We add to the heuristic and empirical evidence for a conjecture of Gillies about the distribution of the prime divisors of Mersenne numbers. We list some large prime divisors of Mersenne numbers Mp in the range 17000 < p < 105.
متن کاملA remark on the means of the number of divisors
We obtain the asymptotic expansion of the sequence with general term $frac{A_n}{G_n}$, where $A_n$ and $G_n$ are the arithmetic and geometric means of the numbers $d(1),d(2),dots,d(n)$, with $d(n)$ denoting the number of positive divisors of $n$. Also, we obtain some explicit bounds concerning $G_n$ and $frac{A_n}{G_n}$.
متن کاملGeneralization of a Theorem of Drobot
It is well known that the Fibonacci number Fn can be a prime only If n 4 or n p, where p is an odd prime. Throughout this paper, p will denote a prime. In a very interesting paper, Drobot [2] proved that Fp is composite for certain primes p. In particular, he proved that if p > 7, p = 2 or 4 (mod 5), and 2p -1 is also a prime, then 2p -11 Fp and Fp > 2p . For example, 371 Fl9 = 4181-37-113. A s...
متن کاملOn the Nonexistence of Odd Perfect Numbers
In this article, we show how to prove that an odd perfect number with eight distinct prime factors is divisible by 5. A perfect number N is equal to twice the sum of its divisors: σ(N) = 2N . The theory of perfect numbers when N is even is well known: Euclid proved that if 2 − 1 is prime, then 2p−1(2p − 1) is perfect, and Euler proved that every one is of this type. These numbers have seen a gr...
متن کامل